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PREDICTING FAILURE OF SPECIMENS WITH EITHER

SURFACE CRACKS OR CORNER CRACKS AT HOLES

J. C. Newman, Jr.

Langley Research Center

SUMMARY

A previously developed fracture criterion was applied to fracture data for surface-

cracked specimens subjected to remote tensile loading and for specimens with a corner

crack (or cracks) emanating from a circular hole subjected to either remote tensile load-

ing or pin loading in the hole. The failure stresses calculated from this criterion were

consistent with experimental failure stresses for both surface and corner cracks for a

wide range of crack shapes and crack sizes in specimens of aluminum alloy, titanium

alloy, and steel.

Empirical equations for the elastic stress-intensity factors for a surface crack and

for a corner crack (or cracks) emanating from a circular hole in a finite-thickness and

finite-width specimen were also developed.

INTRODUCTION

Failures of many aircraft and aerospace vehicle components have been traced to

surface cracks. Such cracks initiate at structural discontinuities such as holes, material

defects, or other abrupt changes in configuration and may propagate to failure under oper-

ating stress levels. In designing against these failures, the designer must be able to pre-

dict the effects of crack size and shape on structural stren_h. Linear elastic fracture

mechanics (LEFM), which utilizes the concept of elastic stress-intensity factors, has been

used to correlate fracture data and to predict failure for cracked plates and structural

components when the crack-tip plastic deformations are constrained to small regions

(plane-strain fracture (ref. 1)). However, when plastic deformations near the crack tip

are large, the elastic stress-intensity factor at failure KI, e varies with planar dimen-

sions, such as crack size and specimen width. (See refs. 2to6.) To account for the vari-

ation in KI, e with crack size and specimen width, the elastic-plastic--stress-strain

behavior at the crack tip must be considered.

An equation which includes the effects of plastic deformation on fracture was derived

in references 4 and 5. This equation relates KI, e to the elastic nominal failure stress



and two material fracture parameters and is designated the two-parameter fracture cri-

terion (TPFC). The TPFC was applied to surface-cracked and through-cracked sheet and

plate specimens subjected to tensile loading in reference 4 and to compact and notch-bend

fracture specimens in reference 5. Reference 6 has also shown that fracture data from

one specimen type and the TPFC can be used to predict failure of other specimen types.

In the present paper the TPFC was applied to surface-crack specimens subjected to

remote tensile loading and to corner-crack (surface crack or cracks emanating from a

circular hole) specimens subjected to either remote tensile loading or pin loading (see

fig. 1). Fracture data from the literature on several aluminum and titanium alloys and

one steel (refs. 7 to 10) were analyzed.

Previous solutions for the elastic stress-intensity factors for surface cracks and

corner cracks at holes either were restricted to limited ranges of crack shape and crack

size or were presented in graphical form. To eliminate some of the restrictions and for

ease of computation, empirical equations which approximate the elastic stress-intensity

factors for a surface crack and for a corner crack (or cracks) in a finite-thickness and

finite-width specimen were developed. These equations :ire compared with other theoret-

ical and experimental stress-intensity factors from the literature.

SYMBOLS

a

b

C'

D

F

fb

fw

KF

initial depth of surface or corner crack, m

number of cracks emanating from hole (1 _Jr 2)

initial half-leng_th of surface crack or initial length of corner crack at hole, m

initial half-lengeth of through crack (see fi_. 13), m

hole diameter, m

complete boundary correction factor on stress intensity

Bowie correction factor on stress intensity for through crack (or cracks) at

hole

finite-width correction factor on stress intensity

fracture toughness computed from equation (1), N/m a/2
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KI ModeI elastic stress-intensity factor, N/m3/2

KI,b

KI,e

Bowie stress-intensity factor (ModeI) for through crack emanating from hole,
N/m3/2

ModeI elastic stress-intensity factor at failure, N/m3/2

KI,h

KI,s

experimental stress-intensity factor (ModeI) at intersection of crack and
hole, N/m3/2

experimental stress-intensity factor (ModeI) at intersection of crack and
plate surface, N/m3/2

KI,pp

KI,ss

stress-intensity factor (Mode I) for crack subjected to pair of wedge force

loads, N/m 3/2

stress-intensity factor (Mode I) for crack subjected to uniform stress, N/m 3/2

KI,sp

M e

stress-intensity factor (Mode I) for crack subjected to single wedge force load

and uniform stress, N/m 3/2

combined front-face, back-face, and finite-width correction factor on stress

intensity for surface or corner crack

M1 front-face boundary correction factor on stress intensity for surface or corner

crack

m fracture-toughness parameter

P pin load at failure, N

Q elastic surface-crack shape factor

S

Sn

gross section stress at failure, Pa

nominal (net section) stress at failure, Pa

Su nominal stress required to produce fully plastic region on net section, Pa



T temperature, K

t specimenthickness, m

W

x

(YU

specimen width, m

distance from center line of crack to location of wedge force load, m

angle measured from plate surface to point on surface-crack or corner-crack

boundary (see insert in fig. 10)

ultimate tensile strength, Pa

eys yield stress, Pa

TWO-PARAMETER FRACTURE CRITERION

The two-pararneter fracture criterion (TPFC) developed and applied in references 4

to 6 accounts for the effects of plastic deformation on fracture properties and relates the

elastic stress-intensity factor at failure Ki,e, the nominal (net section) failure stress

Sn, and two material fracture parameters KF and m. The equation is

KF _ KI, e (Sn _ ays) (1)
fS n \1

1 - m/--)
\Su j

For the surface-crack and corner-crack specimens, Su is equal to _u, the ultimate

tensile strength. (For other specimen types, Su may be greater than _u (ref. 6).)

The fracture parameters K F and m are assumed to be constant for a given combina-

tion of material thickness, temperature, and rate of loading. To obtain fracture constants

that are representative for a given material and test temperature, the nominal failure

stress must be less than _ys, and the fracture data should all be from the same specimen

thickness and from tests that encompass a wide range of specimen widths or crack lengths.

Reference 4 shows how the fracture parameters are determined from a given set of frac-

ture data.

Equation (1) was derived for Sn _ Crys, but reference 4 has shown that equation (1)

closely approximates the failure stresses for surface-cracked specimens even when Sn
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was greater than Crys. Therefore, for the present study of surface cracks and corner
cracks at holes, equation (1) was also applied for Sn> _ys.

ELASTIC STRESS-INTENSITYFACTORS

The form of the elastic stress distribution near a crack tip that containsthe stress-
intensity factor KI andthe square-root singularity is well known(ref. 2). (The deter-

ruination of KI is the basis for linear elastic fracture mechanics.) The stress-intensity
factor is a function of load, configuration (specimen type), andthe size, shape,and location
of the crack. In general, the stress-intensity factor canbe expressedas

KI,e = Sn _ F (2)

for any Mode I crack configuration where Sn is the nominal (net section) stress, c is

the initial crack length (defined in fig. 1), and F is the boundary correction factor. The

boundary correction factor accounts for the influence of various boundaries and crack

shapes on stress intensity.

Previous solutions for the elastic stress-intensity factors or the boundary correc-

tion factors for a surface crack (refs. 11 to 13) and a corner crack at a hole (refs. 8 to 10

and 14) either were restricted to limited ranges of crack shape and crack size or were

presented in graphical form. To eliminate some of the restrictions and for ease of con:-

putation, empirical equations which approximate the elastic stress-intensity factors for

these crack configurations are developed in the appendix and are compared with other the-

oretical and experimental stress-intensity factors from the literature. The following sec-

tions give the nominal stress equation and the boundary correction factor equation to be

used in equation (2) for the surface-crack and corner-crack specimens.

Surface-Crack Specimen

For the surface-crack specimen with a semielliptical crack (fig. l(a)), the elastic

stress-intensity factor at failure is given by equation (2) where the nominal (net section)

stress expressed in terms of the gross stress is

and

S n -
S

1 _rac
2tW

(3)

(4)



In equation(4), the term in parenthesesconverts the gross section stress to the net section
stress; the square-root term adjusts the through-crack solution to treat the surface-crack
configuration; and Me ksthe combinedfront-face, back-face, and finite-width correction
factor (ref. 4). The elastic shapefactor Q was given in reference 11as the square of
the elliptic integral of the secondkind. An expression was chosenin reference 4 to give
a simple approximationand ks givenby

Q = I+ 1.47(-ac) 1"64

c164
q = 1 + 1.47(_} "

(5)

The expression for M e

M e = IM1 +

where

was developed in reference 4 and is given by

(6)

p = 2+ 8(a) 3 (7)

The term M 1 is the front-face correction, the a/t term is the back-face correction,

and fw is the finite-width correction. The expression for M 1 is given by

M 1 = 1.13 - 0.1a
C

'°)1
 o)j

(8)

and fw is given by

Corner-Crack Specimens

Uniform stress.- For the corner-crack specimen with a quarter-elliptical crack

(fig. l(b)), the elastic stress-intensity factor is also given by equation (2) where

(9)
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S n = S (10)
1 _D _bzra c

W 4 tW

and

F= (1 - DW bra4t W) c_QMefb_/seczrD2w
(11)

These equations apply for either one (b = 1) or two symmetrical (b = 2) corner cracks. Ill

equation (11), the term in parentheses converts the gross section stress to net section

stress; the square-root term containing Q adjusts the through-crack solution to treat

the surface-crack configuration; M e is the combined front-face, back-face, and finite-

width correction factor; fb is the Bowie correction factor (ref. 15) for a through crack

(b = 1) or two symmetrical through cracks emanating from a hole (b = 2); and the secant

term accounts for the effect of the finite width on stress concentration at the hole.

The value of Q is computed from equation (5) and Me is given by equation (6).

The expression for M 1 in equation (6) is given by

a
MI= 1.2-0.1 _

cM 1 = +0.1_

(002 < a< 10)-_
i
b

1.o)l
(12)

and fw is given by

fw = sec W -- _ +bc

The Bowie correction fb is given by the following equations (fitted herein to

Bowie's numerical results (ref. 15)) for one (b = 1) or two (b = 2) cracks:

fl = 0.707 - 0.18)t + 6.55_ 2 - 10.54_ 3 + 6.85k4_ 1

f2 1.0 - 0.15)t + 3.46k 2 - 4.47_ 3 + 3.52k 4 l

where

(13)

(14)



for all values of c/D. Equations(14)agree within ±2percent of the numerical values
given by Bowie (ref. 15).

Pin loading.- For the pin-loaded corner-crack specimens with a quarter-elliptical

crack (fig. l(c)), the elastic stress-intensity factor is given by equation (2) where

Sn = P (15)

Wt -W-4 t

and

W 4 t W) Mefb 2-@ (16)

These equations apply for either one (b = 1) or two symmetrical (b = 2) corner cracks.

The terms preceding G b in equation (16) are identical to those given in equation (11).

The term Gb converts the stress-intensity factors for the uniformly stressed corner-

crack configuration to those for the pin-loaded specimens as follows:

1+ w it/ D (17)GI= 2 rr(D+ C ID + 2c

for a single corner crack (b = 1) or

1 W
G2 = 2 + rr(D + 2c) (18)

for two symmetrical corner cracks (b = 2). The appendb: gives the details in developing

equations (17) and (18).

ANALYSIS OF FRACTURE DATA

Surface-crack fracture data on 7075-T651 aluminum alloy (ref. 7) for two specimen

thicknesses and on Ti-6A1-4V titanium alloy (ref. 7) for a wide range of crack shapes and

sizes were analyzed by using equation (1). Also analyzed by using equation (1) were

surface-crack and corner-crack fracture data from the literature on 2219-T87 aluminum

alloy (refs. 7 and 8), 2024-T3 aluminum alloy (ref. 9), Ti-5A1-2.5Sn (ELI) titanium alloy

(ref. 8), and 4340 steel (ref. 10). The fracture parameters K F and m for a given

material, thickness, and test temperature were determined from fracture data for either



the surface-crack or the corner-crack configuration. Thesevalues of KF and m were
then usedto predict the failure stresses for the other crack configuration if datawere
available for comparison. Failure stress was calculated by substituting equation (2) into
equation(1), which gives

KF
Sn = (19)

mK FF +
Su

for Sn =<_ys" Although equation (19) was derived for Sn _ Crys, reference 4 has shown

that equation (19) closely approximates the failure stresses for surface-cracked specimens

when Sn is greater than _ys" Therefore, for the present study of surface cracks and

corner cracks at holes, equation (19) is also applied for Sn > _ys" For extremely small

crack sizes, equation (19) predicts nominal failure stresses greater than Su, but in these

cases Sn is set equal to Su.

Aluminum Alloy Specimens

7075-T651.- Masters, Bixler, and Finger (ref. 7) conducted fracture tests on

7075-T651 aluminum alloy surface-crack specimens for two specimen thicknesses (5

and 13 ram) at room temperature. The tests included a wide variation in crack size

(0.25 _ a/t < 0.95); the crack shape a/c was about 0.5.

Figure 2 shows the ratio of nominal failure stress Sn to the tensile strength _u

for the surface-crack tests as a function of cF 2, where c is the crack length and F

is the boundary correction factor for the surface crack (eq. (4)). This type of plot (Sn/S u

against cF 2) gives a single curve defined by KF and m for all crack shapes and

crack sizes. The fracture parameters K F and m for each specimen thickness were

determined by a best fit of equation (19) to these data. (The best-fit procedure used is

given in ref. 4.) The thicker material exhibited a fracture behavior very similar to that

predicted by LEFM (m was nearly zero). The thinner material exhibited higher failure

stresses for a given crack size and had larger values of K F and m than the thicker

material. The solid and dashed curves were calculated from the TPFC (eq. (19)) by using

the values of K F and m indicated.

2219-T87.- Masters, Bixler, and Finger (ref. 7) conducted fracture tests on

2219-T87 aluminum alloy surface-crack specimens for several thicknesses at a tempera-

ture of 77 K. Hall and Finger (ref. 8) tested both surface-crack and corner-crack speci-

mens (remote uniform stress) made from a different heat of the same alloy and tested at

the same temperature. The results from the surface-crack tests were used to obtain the

fracture parameters and a comparison was then made between the predicted and experi-



mental failure stresses for the corner-crack tests. Figure 3 shows Sn/au for the
surface-crack tests (refs. 7 and 8) (denotedby the symbols) as a function of cF2. The
surface-crack tests for the 5- and 13-mm-thick specimensincludeda wide variation in
crack shape(0.2 _ a/c _ 0.8) andcrack size (0.25-<_a/t _ 0.9). The 18-mm-thick speci-
menshada value of a/t of about0.5, with a/c equal to either 0.2 or 0.5. The fracture
parameters KF and m were determined by a best fit of equation(19) to these data.
The failure stresses calculated from the TPFC (eq. (19)) for eachthickness are shownby
the curves. The experimental failure stresses generally were within ±10percent of the
calculatedfailure stresses.

The corner-crack tests conductedby Hall andFinger (ref. 8) on the samealloy and
tested at the same temperature as the 18-mm-thick surface-crack specimensare shown
in figure 4. The corner-crack tests includedvariations in the hole diameter-thickness
ratio (D/t = 0.5 and 1.0), crack shape (0.2 =<a/c _ 1.1), and crack size (0.2 _-<a/t _ 0.8).

Figure 4 shows the ratio of nominal failure stress Sn to the tensile strength au for the

corner-crack data as a function of cF 2, where c is the crack length from the hole and

F is the boundary correction factor for the corner crack (eq. (11)). The fracture param-

eters K F and m, determined from the surface-crack tests, were also assumed to apply

for the corner-crack tests. The experimental failure stresses (open symbols) generally

were within +10 percent of the predicted results (dashed curve). The solid curve shows

the results of a best fit of equation (19) to the corner-crack data. The fracture param-

eters obtained from the corner-crack data were slightly lower than those obtained from

the surface-crack data. The fracture parameters obtained from the corner-crack data

are considered to be more representative for this material and test temperature. The

results of the four surface-crack tests (denoted by the x symbol) are also shown in fig-

ure4 for reference. These results demonstrate how well the TPFC correlated fracture

data from surface-crack and corner-crack specimens for ,_ wide range of crack shape

a/c and crack size a/t.

2024-T3.- Broek, Nederveen, and Meuhnan (ref. 9) conducted surface-crack and

corner-crack fracture tests on 2024-T3 aluminum alloy sheet and plate material at room

temperature. The four material thicknesses ranged from 5to 35 mm. For the surface

cracks, a/t varied from 0.6 to 1.0 and a/c was near unity. For the corner cracks,

a/t varied from 0.5 to 1.0 and a/c was again near unity. Because 2024-T3 aluminum

alloy material does not exhibit a strong thickness effect (ref. 16), fracture data for all

thicknesses testedin reference 9were analyzed as one group. The results from the

surface-crack tests were used to obtain the two fracture parameters. A comparison was

then made between the predicted and experimental failure stresses for the corner-crack

tests.

Figure 5 shows the surface-crack fracture data (ref. 9) for the 2024-T3 aluminum

alloy material. The fracture parameters _(KF = 132 MN/m3/2 and m = 1.0) were

10



obtainedby a best fit of equation(19)to these data (solid curve). A value of 1 for the
fracture-toughness parameter m indicatedthat the material wasvery ductile, andthe
failure stresses were nearly equal to the yield stress of the material (dashedline). The
experimental failure stresses (symbols) fell within +10 percent of the calculated results

(solid curve). Figure 6 shows the corner-crack fracture data for both uniformly stressed

specimens (open symbols) and pin-loaded specimens (solid symbols). Again, the fracture

parameters K F and m, determined from the surface-crack tests, were assumed to

apply for corner cracks. The solid curve shows the predictions from equation (19). The

experimental data were within +10 percent of the predicted results, even though the hole

diameter was 40 percent of the specimen width and some of the corner cracks had cracked

areas as large as 30 percent of the net section area.

Titanium Alloy Specimens

Ti-6A1-4V.- Masters, Bixler, and Finger (ref. 7) conducted fracture tests on

surface-crack specimens made of Ti-6A1-4V titanium alloy at room temperature. The

tests included variations in crack shape (0.2 < a/c =<0.8) and crack size (0.3 _ a/t _ 0.9).

The results are shown in figure 7. The fracture parameters K F and m were deter-

mined by a best fit of equation (19) to these data. The solid curve shows the calculations

from the TPFC. The experimental failure stresses (symbols) were within +13 percent of

the calculated failure stresses.

Ti-5A1-2.5Sn.- Hall and Finger (ref. 8) tested both surface-crack and corner-crack

specimens made of Ti-5A1-2.5Sn (ELI) titanium alloy at a temperature of 77 K. The

surface-crack tests had a value of a/t of about 0.4 and a value of a/c of about 0.6.

The corner-crack tests included variations in hole diameter-thickness ratio (D/t = 0.5

and 1.0), crack shape (0.2 _ a/c _-<1.1), and crack size (0.2 _ a/t <- 0.8).

Figure 8 shows the surface-crack and corner-crack fracture data (symbols) for this

titanium alloy. The fracture parameters --/KF = 82.9 MN/m3/2 and m = 0.08) were
%

determined by a best fit of equation (19) to only the corner-crack data. (The fracture

parameters could not be determined from the surface-crack data because all tests were

conducted with the same crack size and shape.) The experimental failure stresses gen-

erally were within ±15 percent of the calculated results (solid curve). The solid curve

also shows the predicted results for the surface-crack tests (denoted by the × symbol).

4340 Steel Specimens

Hall, Shah, and Engstrom (ref. 10) conducted fracture tests on high-strength 4340

steel surface-crack and corner-crack specimens at room temperature. The corner-crack

specimens (remote uniform stress) had either one or two (symmetrical) corner cracks at

the edge of the hole. The corner-crack tests included variations in hole diameter-

11



thickness ratio (D/t = 0.83and 1.25)and crack size (0.4 _ a/t 5__0.8), but the crack shape
a/c wasapproximately unity. The fracture parameters KF and m were determined
from the corner-crack fracture data (shownas openandsolid symbols in fig. 9). The
best fit of equation(19) to the corner-crack fracture data required that m be negative
(m = -0.9), which is in violation of the boundsimposedon m in the derivation of equa-
tion (1). In reference 4, a negativevalue of m also occurred for a few surface-crack
fracture specimensmadeof low-toughnessmaterials and wasattributed in reference 4 to
a compressive residual stress near the surface of the plate. Becausethe stress-intensity
factor used in equation(1) did not include the contribution from the residual stresses, the
parameter m adjusted itself to accountfor this deficiency, which resulted in a negative
value. Elber (ref. 17)hasshownthat residual stresses near the surface of a plate can
significantly affect the failure stresses for surface-cracked specimensandthat the con-
tribution of the residual stresses to the stress-intensity factor shouldbe included. The
presenceor absenceof residual stresses in these specimenswasnot established in ref-
erence 10. However, the material, beingof high strength, was difficult to machine, and
therefore, the specimensare suspectedof havinghigh residual machiningstresses.

The surface-crack andcorner-crack results (symbols) for the 4340steel are shown
in figure 9. The solid curve was calculated from equation(19)by using KF = 50.5

MN//m3/2 and m = -0.9. The dashed curve shows the calculations from equation (19)

with K F = 69.6 MN/m3/2 and m = 0 (LEFM). This high-strength steel should exhibit

a very brittle fracture behavior (ref. 10). The corner-crack failure stresses were within

+10 percent of the calculated results (solid or dashed curve); additional tests at smaller

crack lengths would be required to establish the correct behavior in that range. The two

surface-crack results were higher (about 15 percent) than the predicted results (solid or

dashed curve). For this material, the differences between the surface-crack and corner-

crack results could stem from either the approximate nature of the boundary correction

factors for these cracked configurations or the residual stresses. The effects of residual

stresses should be considered whenever surface-crack or corner-crack specimens are

being made, especially for high-strength materials. The effects of residual stresses on

fracture toughness need to be studied further.

CONC LU DING RE MARKS

An equation that relates the elastic stress-intensity factor at failure, the elastic

nominal failure stress, and two material fracture parameters has been applied as a two-

parameter fracture criterion (TPFC) to fracture data reported in the literature for sur-

face cracks and corner cracks (surface cracks at the edge of a hole) in specimens of

aluminum alloy, titanium alloy, and steel. The surface-crack specimens were subjected

to remote uniform stress, whereas the corner-crack specimens were subjected to either

12



remote uniform stress or pin loading in the hole. The corner-crack specimenshadeither
one or two (symmetrical) surface cracks emanatingfrom the hole. Wide rangesof crack
shape(ratios of crack depthto crack length from 0.2 to 1.1) and crack size (ratios of
crack depthto specimenthickness from 0.2 to 1.0)were considered. The TPFC corre-
lated andpredicted failure stresses for surface-cracked and corner-cracked specimens
within +10 percent for most of the data analyzed.

Stress-intensity-factor equations used in the TPFC for the corner crack (or cracks)

emanating from a circular hole in a finite-thickness and finite-width specimen were devel-

oped. These equations are compared in the appendix with experimental (photoelastic)

stress-intensity factors from the literature and agree generally within +10 percent of the

average of the experimental stress-intensity factors along the crack front. As the crack

depth approaches the specimen thickness, the stress-intensity factors calculated from

these equations approached (within +2 percent) the theoretical stress-intensity factors for

a through crack.

Langley Research Center

National Aeronautics and Space Administration

Hampton, Va. 23665

May 10, 1976
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APPENDIX

DEVELOPMENT OF STRESS-INTENSITY FACTORS FOR SURFACE CRACKS

AND CORNER CRACKS AT HOLESIN FINITE PLATES

Several investigators have obtained approximate stress-intensity factors for surface

cracks and corner cracks at holes in infinitely wide plates. In this section, empirical

stress-intensity factor equations are presented for surface cracks (ref. 4) and developed

for corner cracks at holes for a wide range of crack shapes a/c and crack sizes a/t

in finite-thickness and finite-width specimens. Because of the similarity between the

surface-crack and corner-crack configurations, the stress-intensity factors from the sur-

face crack were used to help establish those for the corner crack. These equations are

compared with other theoretical and experimental (photoelastic) stress-intensity factors

from the literature.

Surface Crack

Background.- Irwin (ref. 11) derived an expression [or the stress-intensity factor

around an elliptical crack in an infinite elastic solid subjected to uniaxial tension. The

stress-intensity factor along the boundary of the elliptical crack in an infinite solid, sub-

jected to a remote uniaxial stress S acting normal to the plane of the crack, is given by

S _/'_a/a2 cos 2 8 + sin 2 _1/4KI v]
(A1)

For c ->a, the maximum stress-intensity factor is given by

KI _ _'_ (A2)

Irwin (ref. 11) also estimated the stress-intensity factor for a semielliptical crack in a

finite-thickness infinitely wide specimen. (See fig. l(a) for W >> c.) His equation was

restricted to crack depths less than one-half the plate thickness.

The boundary correction factors for a surface crack in an infinitely wide plate as a

function of a/t and a/c were obtained from the analytical results of references 12, 13,

and 18. Smith and Alavi (ref. 12) obtained approximate solutions for a near penny-shaped

crack (a/c = 0.4 and 1.0) as a function of a/t. For shallow cracks, Rice and Levy

(ref. 13) obtained approximate solutions for a/c = 0.1 and 0.2 as a function of a/t.

Gross and Srawley (ref. 18) obtained a solution for a/c = 0 (an edge-cracked plate).

14
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Finite plate subjected to uniform stress.- In reference 4, an expression for the

boundary correction factor on stress intensity for a surface crack in a finite-thickness

specimen was obtained by fitting an empirical equation to the analytical results from ref-

erences (refs. 12, 13, and 18). The equation was chosen so that the stress-intensity fac-

tor for a through crack in a finite-width specimen (ref. 1) was obtained when the surface

crack intersects the back surface of the plate (a = t). The elastic stress-intensity factor

for the configuration shown in figure l(a) is given by

K I = S@_ Me (A3)

The elastic shape factor

gral of the second kind.

imation and is given by

Q was given in reference 11 as the square of the elliptic inte-

An expression was chosen in reference 4 to give a simple approx-

Q = 1 + 1.47(a) 1"64

Q : 1 + 1.47(c) 1"64 (a > 1.0)

(A4)

The maximum error in the stress-intensity factor using these approximate equations for

Q is less than 0.25 percent. The boundary correction factor M e developed in refer-

ence 4 is given by

Me= [MI+( Q_-M1)@)Plfw
(A5)

where

3
p -- 2 + 8(_) (A6)

M 1 is the front-face correction, and the

expression for M 1 is given by

M 1= 1.13 - 0.1a
e

a/t term is the back-face correction. The

< a < 1.0)_

(O.02 = _ =

10>j
(A7)
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The term fw accounts for the influence of the finite width and is given by

/secfirc ,_\
fw =t,j (AS)

The equation for fw proposed herein is slightly different from the original equation pro-

posed for fw in reference 4. The new equation was chosen because Jolles, McGowan,

and Smith (ref. 19) have experimentally shown that the original equation slightly underesti-

mated the influence of specimen width on stress intensity (less than 7 percent) for a large

surface crack (2c/W = 0.81, a/t = 0.36, a/c = 0.07) in a finite-thickness and finite-width

specimen. The new equation is in better agreement with the experimental stress-intensity

factors.

The equation for the boundary correction factor (eq. (A5)) is an approximate equa-

tion which accounts for the influence of the front face, back face, and finite width on

stress intensity. Figmre 10 shows calculations from equation (A5) divided by the square

root of Q (solid curves)as a function of a/c and a/'t for W = m (or fw = 1). The

correction factors given by equation (A5) agree fairly well with the analytical results of

references 12, 13, and 18. For a/c> 1.0, the maximum stress-intensity factor is near

0 = 0 and rr (see the insert in fig. 10), and the correction factors are not influenced

strongly by a/t.

Equation (AS) was compared with experimental (photoelastic) stress-intensity fac-

tors in reference 20 and generally agreed to within +10 percent of the experimental values.

Although equation (A5) gives only a single value of stress intensity for each configuration

(independent of the angle 0), this value of stress intensity is assumed, as in reference 4,

to occur at the location along the crack front at which fracture initiates.

As a/t approaches unity for any value of a/c (except zero), equation (A3) reduces

to the stress-intensity factor for a through crack of length 2c in a finite-width plate

(ref. 1), which is given by

K I = S_l/rrc sec a__g.c
Wv

(A9)

Corner Cracks at Holes

Background.- Several investigators (refs. 8 to 10 and 14) have obtained approximate

stress-intensity factors for the corner crack (or cracks) at the edge of a circular hole.

These approximations had some limitations on crack shape a/c or crack size a/t.

Other investigators (refs. 21 and 22) have obtained experimental (photoelastic) stress-

intensity factors for a corner crack at a hole in a finite plate.
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In the present paper, empirical stress-intensity-factor equations are developed for

a corner crack (or cracks) emanating from a circular hole in a finite plate subjected to

either remote uniform stress or pin loading in the hole for a wide range of crack shape

a/c and size a/t. These equations are compared with other theoretical and experimen-

tal stress-intensity factors from the literature.

Finite plate subjected to uniform stress.- The stress-intensity factor for either one

or two (symmetrical) corner cracks emanating from a circular hole in a finite-thickness

and finite-width specimen subjected to remote uniform stress (fig. l(b)) is given by

KI= S _Q Mefb_secrrD2w (A10)

where b= 1 for a single corner crack and b= 2

The equation for Q is given by equation (A4) and

term M 1 in equation (A5) is given by

for two symmetrical corner cracks.

M e is given by equation (A5). The

a
M 1 = 1.2 - 0.1

M 1 = +0.1_

0 < a < 1.0)l

.02 :

fa > 1.01J

(All)

These equations are similar to equations (AT) except that they account for an interaction

between the hole and the front face. These equations were chosen so that the stress-

intensity factors for W = _ would approach the correct limiting values as a/c becomes

large or as the hole radius becomes large with a/c = 1 or infinity. The finite-width

correction is given by

fw = sec wT{-cTbc

This equation for fw was chosen to approximately account for the effects of crack eccen-

tricity on stress intensity (ref. 23) for a single crack (b = 1) emanating from a hole.

Equation (A12) also reduces to equation (A8) for b = 2 and D = 0.

The term fb in equation (A10) is the Bowie correction for a through crack (or

cracks) emanating from a circular hole (eq. (14)), and the secant term in equation (A10)

accounts for an interaction between the hole and the finite width (see ref. 24, p. 42).

Fig'ure 11 shows the stress-intensity factors from equation (A10) normalized by

KI, b (Bowie's stress-intensity factor for a through crack of length c emanating from

17
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a circular hole) as a function of a/t and a/c for D/t -- 1 and W = oo. As a/t

approaches unity or a/c approaches infinity, the stress intensity KI approaches KI, b.

Although equation (A10) gives only a single value of stress intensity for each configuration,

independent of the angle _ (see the insert in fig. 9), this value of stress intensity is

assumed to occur at the location along the crack front at which fracture initiates.

Figures 12 and 13 show a comparison between the theoretical stress-intensity fac-

tors from Hall and Finger (ref. 8), Shah (ref. 14), and from equation (A10) for a/c = 1.0

and 0.25, respectively. All stress intensities are normalized by KI, b with D/t = 1

and W = oo (or fw = 1). At small values of a/t, Shah's results are in good agreement

with equation (A10) for both values of a/c. (Shah had selected 0 = 65 ° as the location

at which fracture initiates.) For a/c = 0.25, Shah's results are also in good agreement

(il0 percent) with equation (A10) for all values of a/t. However, the Hall and Finger

results are generally 10 to 30 percent higher than equation (A10) for both values of a/c.

Figure 14 shows a comparison between the experimental (photoelastic) (refs. 21 and

22) and the calculated (eq. (A10)) stress-intensity factors normalized by KI, b for 14 dif-

ferent corner-cracked configurations (symbols). A wide range of crack shapes and crack

sizes was considered. The experimental stress-intensity factor was the average of two

stress intensities obtained from different locations along the crack front. One location

was at the intersection of the crack front with the plate surface (see the insert in the fig-

ure) with the stress intensity denoted by Ki,s, and the other location was at the hole sur-

face with stress intensity denoted by KI, h. The stress-intensity factors calculated from

equation (A10) generally were within +10 percent of the average of KI, s and KI, h.

As a/t approaches unity for any value of a/c (except zero), equation (A10)

reduces to the equation for the stress-intensity factor for a through crack (or cracks)

emanating from a circular hole in a finite-width plate and is g'iven by

S _ fwfb\/sec _DKI V 2W
(A13)

where fw is given by equation (A12) with a/t = 1 and fb is given by equation (14).

Equation (A13) gives stress-intensity factors within 22 percent of the values calculated by

Newman (ref. 24) using boundary collocation for two symmetrical through cracks emanat-

ing from a circular hole in a finite-width plate.

Finite plate subjected to pin loading.- The stress-intensity factors for either one

or two cracks emanating from a circular hole subjected to pin loading in the hole were

obtained by superposition of known solutions for stress intensity (similar to that given in

ref. 9). For example, a crack emanating from a pin-loaded hole is similar to the wedge-

force-loaded crack (ref. 23). Figure 15 shows how the stress-intensity factor Ki,sp at

18
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point A for the wedge-force-loaded through crack (supported by uniform stress at one end)

was obtained by superposition of known solutions. The stress intensity for the uniformly

stressed plate is

KI,ss = S, _f_Tfw (A14)

and for the wedge-force-loaded crack at point A (ref. 22) is

_ P_ Fc'-x
KI'pp t_ VC-V_+ x fw

(A15)

The finite-width correction fw for the uniformly stressed plate was also assumed to

apply for the wedge-force-loaded plate. The stress intensity Ki,sp is given by

Ki,sp = Ki, ss + Ki,pp - Ki, sp (A16)

or

1
Ki,sp : _(KI, ss + Ki,pp ] (A17)

Substituting equations (A14) and (A15) into equation (A17) gives

GKI,sp I, ss + _ I]_] = KI, ssG
(A18)

where the pin load P was expressed in terms of the uniform stress (P = SWt). Thus,

the term in the parentheses, denoted as G, converts the stress-intensity factor for the

uniformly stressed plate to that for the wedge-force-loaded plate. The function G was

used to convert the stress intensity for the corner-crack specimen under uniform stress

to that for pin loading.

The stress-intensity factor for one or two (symmetrical) corner cracks emanating

from a circular hole in a finite plate subjected to pin loading in the hole (see fig. l(c)) was

obtained from equation (A18) by replacing Ki, ss with equation (A10) and is given by

KI= S _-_Mefb_secZrD (AI9)
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where

G1 = + Tr(D + c) + 2c

for a single corner crack (b = 1) and

1 W
G2 =2+_(D+ 2c)

for two symmetrical corner cracks (b = 2).

been rewritten in terms of the hole diameter

as 2c' = D +bc and 2x = (2 - b)c.

of the hole.

APPENDIX

(A20)

(A21)

Note that c' and x in equation (AIS) have

D and the crack length from the hole c

The pin load was assumed to apply at the center line
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• Gross and Srawley (ref. 18)
O Rice and Levy (ref. 13)
[] Smith and Alavi (ref. 12)

-- Equation (A5) with W = co

10

I I I I I
0 .2 .4 .6 .8 1.0

a

Figure 10.- Boundary correction factors on stress intensity for surface crack

in an infinitely wide and finite-thickness specimen.

32



1.0

a

co

2

.8

K I

KI,b

.6

.4

.2

-- Equation (AIO)
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Figure 11.- Stress-intensity factors for corner crack in an infinitely wide and

finite-thickness specimen (eq. (A10)). D/t = 1; W = _.
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Figure 12.- Comparison of stress-intensity factors from various theories

for corner craekwith a/c= 1. D/t= 1; W= o0.
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-- Equation (A10)
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Figure 13.- Comparison of stress-intensity factors from various theories

for corner crack with a/c = 0.25. D/t = 1; W = oo.
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Figure 14.- Comparison of experimental and theoretical stress-intensity factors

for corner crack in finite plale.
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